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The equation A⊗ x = B⊗ y over (max;+)
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Abstract

For the two-sided homogeneous linear equation system A ⊗ x = B ⊗ y over (max;+), with
no in.nite rows or columns in A or B, an algorithm is presented which converges to a .nite
solution from any .nite starting point whenever a .nite solution exists. If the .nite elements
of A, B are all integers, convergence is in a .nite number of steps, for which a precise bound
can be calculated if moreover one of A, B has only .nite elements. The algorithm is thus
pseudopolynomial in complexity. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well-known that the structure of many discrete-event dynamic systems may be
represented by square matrices A over the semiring

R = ({−∞} ∪ R;⊕;⊗) = ({−∞} ∪ R;max;+):

If the initial event-times of such a system are represented by a vector s, then the
event-times after r stages are given by the rth term of the orbit

{A(r) ⊗ s (r = 1; 2; : : :)}; where A(r) = A⊗ A⊗ · · · ⊗ A (r-fold):

The reachability problem asks whether s can be chosen so that the orbit contains a
given vector b. Clearly, the answer is a6rmative if and only if event-times b can
be achieved after one stage from suitable previous event-times, so algebraically the
reachability problem produces the linear-equations problem: to solve A⊗ x= b. Some
necessary facts relevant to this are reviewed in the next section.
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The principal topic we shall address arises from the synchronisation problem: can
two di>erent systems be set in motion so as subsequently to achieve the same event-
times? Clearly, this asks whether x, y can be found to satisfy the equation

A⊗ x = B⊗ y (1.1)

for given A, B.
The use of −∞ for a matrix element aij is generally to model the fact that the

system has no forward coupling from component j to component i. To avoid triviality,
therefore, we shall assume throughout that A, B have at least one .nite element on each
row and on each column: such matrices are called doubly G-astic [2]. And since our
vectors x, y, b, etc. represent times of physical events, we shall restrict our attention
to situations where these are .nite. These assumptions are algebraically self-consistent:
all sums and products of doubly G-astic matrices are doubly G-astic [2]. In particular,
with x .nite and A doubly G-astic, all elements of the orbit are automatically .nite.
In summary, therefore, we shall investigate .nite solutions to (1.1) with A, B doubly

G-astic.
A pair (x; y) satisfying (1.1) will now be called simply a solution. In Section 3, we

present a straight-forward algorithm which converges to a solution in pseudopolynomial
time from any .nite initial pair whenever a solution exists.
Although the above motivation has assumed A, B to be square, there is no extra

algebraic or algorithmic cost in assuming only that A, B have equal number of rows.
This we shall do.
A related inhomogeneous equation in x only:

A⊗ x ⊕ a = B⊗ x ⊕ b (1.2)

has received some attention in the literature and generates relatively complex analysis
(see [2,4]) and references in [1]. It is of interest, therefore that instances of (1.2) can
be reformulated as instances of (1.1). We consider this further in Section 10.

2. Background assumptions

We assume familiarity with the basic properties of the semiring R and of matrix
algebra over R, as set out in e.g. [1,3,5]. In particular, we shall make extensive use of
the isotonicity of the scalar and matrix operations relative to the natural partial order.
To avoid repetitive dimensioning statements, we assume all matrices conformable for
the indicated operations.
For a given square matrix X over R, if there exist .nite vector e, and �∈R, con-

stituting an eigenvector and eigenvalue for X :

X ⊗ e = �⊗ e;

we say that X has 1nitely soluble eigenproblem. A su6cient condition is the .niteness
of X ; necessary and su6cient conditions are discussed further in [3]. � is then [3] a
unique function �(X ) (the maximum cycle-mean) of the elements of X . Both � and



R.A. Cuninghame-Green, P. Butkovic / Theoretical Computer Science 293 (2003) 3–12 5

the generators of the space of eigenvectors can be determined in low-order polynomial
time [1,3]. It is easy to see that if A, B are square and have a .nite eigenvector in
common, then a solution to (1.1) exists, which is readily found using these algorithms.
The system R is embeddable in the self–dual system

I= ({−∞} ∪ R ∪ {+∞};⊕;⊗;⊕′;⊗′)

= ({−∞} ∪ R ∪ {+∞};max;+;min;+);

where the commutative operations ⊗;⊗′ di>er only in that

−∞⊗+∞ = −∞; −∞⊗′ +∞ = +∞:

For any matrix A= [aij] over I, the conjugate matrix is A∗ = [−aji] obtained by nega-
tion and transposition. The following relations (2.1), (2.2), (2.3) hold for any matrices
U , V , W over I:

(U ⊗′ V )⊗W 6 U ⊗′ (V ⊗W ); (2.1)

U ⊗ (U ∗ ⊗′ W )6 W; (2.2)

U ⊗ (U ∗ ⊗′ (U ⊗W )) = U ⊗W: (2.3)

A set of linear inequalities A⊗ x6b over R always possesses a solution. The greatest
is

x = A∗ ⊗′ b; (2.4)

which is .nite for A doubly G-astic and b .nite.
This principal solution is calculated in I but lies in R, being .nite. It is also

the greatest solution of the following linear-equation system (2.5), if and only if any
solution exists:

A⊗ x = b: (2.5)

3. The alternating method

Eqs. (2.4) and (2.5) motivate the following Alternating Method for solving (1.1):

Initialise
Choose arbitrary .nite vector x
Set r=0; x(0)= x

Repeat
Set y= principal solution of B⊗y6A⊗ x; y(r)=y
Set x= principal solution of A⊗ x6B⊗y; x(r + 1)= x
Set r= r + 1

Until convergence
End
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De.ne the maps

� : y → A∗ ⊗′ (B⊗ y);  : x → B∗ ⊗′ (A⊗ x): (3.1)

These are compositions of continuous isotone operations, and therefore are continuous
and isotone.
The Alternating Method thus generates the pair-sequence {(x(r); y(r)) (r=0; 1; : : :)},

where

x(r + 1) = �(y(r)); y(r) =  (x(r)): (3.2)

We show in Section 7 that the pair-sequence {(x(r); y(r))} converges to a solution if
one exists. It is clear that each step of the algorithm has polynomial complexity, and in
Section 10 we show that the algorithm as a whole has pseudopolynomial complexity.

4. An example

Suppose

A =


 3 −∞ 0

1 1 0
−∞ 1 2


 ; B =


 1 1
3 2
3 1


 ; so A∗ =


 −3 −1 +∞
+∞ −1 −1
0 0 −2


 ;

B∗ =
[−1 −3 −3
−1 −2 −1

]
:

Set

x = x(0) =


 5
3
1


 ; say:

The algorithm .nds sequentially:

r = 0 : A⊗ x =


 8
6
4


 ; y =

[
1
3

]
; B⊗ y =


 4
5
4


 ;

r = 1 : x =


 1
3
2


 ; A⊗ x =


 4
4
4


 ; y =

[
1
2

]
; B⊗ y =


 3
4
4


 ;

r = 2 : x =


 0
3
2


 ; A⊗ x =


 3
4
4


 :

At this point, A⊗ x(2)=B⊗y(1), giving the solution (x(2); y(1)).
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5. Stable solutions

We shall say that (x; y) is stable if

(x; y) = (�(y);  (x)) (5.1)

If (x; y) is also a solution, we speak of a stable solution.

Theorem 5.1. Any stable pair is a stable solution.

Proof. If (x; y) is stable, then, using (2.2)

A⊗ x= A⊗ �(y) = A⊗ (A∗ ⊗′ (B⊗ y))6B⊗ y = B⊗  (x)

= B⊗ (B∗ ⊗′ (A⊗ x))6A⊗ x:

Hence all these terms are equal and A⊗ x=B⊗y.

Theorem 5.2. If (x; y) is a solution, then (�(y);  (x)) is a stable solution.

Proof. We use (2.3) and the fact that (x; y) is a solution.

 (�(y)) = B∗ ⊗′ (A⊗ (A∗ ⊗′ (B⊗ y))) = B∗ ⊗′ (A⊗ (A∗ ⊗′ (A⊗ x)))

= B∗ ⊗′ (A⊗ x) =  (x):

Similarly, �( (x))= �(y), whence (�(y);  (x)) is stable and therefore a solution.

6. Properties of the sequence

Theorem 6.1. The sequence {A⊗ x(r) (r=0; 1; : : :)} is non-increasing.

Proof. Applying standard inequality (2.2) to recurrences (3.2),

A⊗ x(r + 1)6 B⊗ y(r)6 A⊗ x(r):

Theorem 6.2. The sequence {x(r) (r=1; 2; : : :)} is non-increasing.

Proof.

x(r + 1) = �(y(r)) = �(B∗ ⊗′ (A⊗ x(r))):

So x(r + 1) is an isotone function of the non-increasing A⊗ x(r).

Theorem 6.3. If a solution exists, then the sequence {x(r) (r=1; 2; : : :)} is lower-
bounded for any x(0).

Proof. For any stable solution (x; y), and �∈R, it is immediate that �⊗ (x; y) is again
a stable solution, and � may be chosen small enough so that �⊗ x6x(1). Hence if
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a solution exists, then, using Theorem 5.2, a stable solution (u; v) exists such that
x(1)¿u. And if x(r)¿u for some r, then using (3.2) and isotonicity, we have

x(r + 1) = (� ◦  )(x(r))¿(� ◦  )(u) = �(v) = u

and the result follows by induction.

We remark that in the proof of Theorem 6.3, � may in fact be chosen so that
�⊗ x6x(1), but with equality in at least one component. Theorems 6.2 and 6.3 then
show that that component of x(r) remains .xed in value for r¿1. Moreover, it is clear
that analogues of Theorems 6.1–6.3 are provable for the sequence {y(r)}. Hence:

Theorem 6.4. If all components of x(r) or y(r) have properly decreased after a num-
ber of steps, the algorithm may be halted with the conclusion that no solution exists.

7. Monotonic convergence

Theorem 7.1. The pair-sequence {(x(r); y(r)) (r=0; 1; : : :)}, generated by the alter-
nating method, converges if and only if a solution exists. Convergence is then mono-
tonic, to a stable solution, for any choice of x(0).

Proof. If (x(r); y(r)) → (�; �), then by continuity

(�; �) = lim(x(r + 1); y(r)) = lim(�(y(r));  (x(r))) = (�(�);  (�)):

Hence (�; �) is stable. Conversely, if a solution exists, the monotonic convergence
of {x(r)} follows from Theorems 6.2 and 6.3, and that of {y(r)}= { (x(r))} by
isotonicity and continuity.

By replacing R by one or other of its subgroups (under arithmetical addition), we
obtain subsemirings of R: in particular, we may take the rationals or the integers.
To avoid unnecessary notation, we shall then refer simply to the rational case or the
integer case, as distinct from the general case when R itself is taken. Since the rationals
are dense in the reals, and the numbers are usually supposed to refer to measurable
physical amounts, it is typically the rational case which is relevant. For the Alternating
Method, however, we may then regard the arithmetic as set in the domain of integer
multiples of �−1, where � is the LCM of the denominators of all .nite elements of A,
B and x(0). The integer case is thus of central importance.
Clearly, a lower-bounded non-increasing integer sequence converges in a .nite num-

ber of steps, whence:

Theorem 7.2. In the integer case, if a solution exists, the Alternating Method pro-
duces a solution in a 1nite number of steps.

Such .nite termination is illustrated by the example of Section 4.
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Consider an instance of (1.1) in the integer case. This may also be considered as
an instance in the general case and may have a non-integer solution. However, even
in the general case, x(0) may always be chosen with integer elements and it is clear
that all pairs of the sequence {(x(r); y(r))} will then have integer elements and so
therefore will any limit. Thus the following holds.

Theorem 7.3. If an instance of (1.1) in the integer case has a solution when viewed
as an instance in the general case, then it possesses a solution in the integer case,
and conversely.

8. Convergence speed in the +nite-integer case

A bound may be calculated on the number of steps to convergence in the integer
case, if one of the matrices A, B has only .nite elements. Assume .rst that A is .nite.
Suppose x(1)= � and that a solution exists. For convenience, write x for x(r). From

the remark following Theorem 6.3, we know that at least one component of x never
falls in value—let us call such a component a sleeper. Suppose the jth component
xj = �j is a sleeper and the kth component xk is a non-sleeper. Now, xk plays no part
in the evaluation of A⊗ x if

aik + xk ¡ aij + �j; ∀i;
that is, if xk takes a value below ukj, where

ukj = min
i
(aij − aik + �j):

This last expression is just (A∗ ⊗′ A)kj + �j. If xk¡ukj, we say that xk is dominated
by the sleeper �j. Since xk is non-increasing, the domination persists in subsequent
iterations. Now, some component is a sleeper, so xk is certainly dominated if it falls
in value below �k , where

�k = min
j

ukj;

wherein index j is now unrestricted. This last expression is then just

min
j
((A∗ ⊗′ A)kj + �j) = (A∗ ⊗′ A⊗′ �)k ; (8.1)

calculated by pre-computing �=A∗ ⊗′ A⊗′ �. So the fall of xk su6cient for xk to be
permanently dominated does not exceed

wk = �k − �k + 1: (8.2)

Notice that the .niteness of A guarantees our obtaining .nite values for the ukj and
hence for �k and wk . If the dimension of x is n, there are at most (n−1) non-sleepers,
and at each step prior to convergence, at least one not-yet-dominated non-sleeper falls
by at least unity, because at least one component of A⊗ x must fall. Hence the number
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of steps to convergence does not exceed the sum of the greatest (n − 1) of the wk ,
which yields a termination criterion for the algorithm: if convergence has not occurred
in this number of steps, it is certain that no solution exists.

Theorem 8.1. The number of steps to convergence in the integer case if A is 1nite
does not exceed

(n− 1) ∗ (1 + �∗ ⊗ A∗ ⊗ A⊗ �);

where n is the column-dimension of A, and x(0)= �.

Proof. An overestimate of the sum of the greatest (n− 1) of the wk is

(n− 1) ∗max
k

wk = (n− 1) ∗max
k

(�k − �k + 1) (using (8:2))

= (n− 1) ∗ (1 + �∗ ⊗ �) = (n− 1) ∗ (1 + �∗ ⊗ A∗ ⊗ A⊗ �)

(using (8:1)):

Theorem 8.2. For given square matrix D= [dij] with 1nitely soluble eigenproblem,
the minimum of x∗ ⊗D⊗ x w.r.t. x equals the eigenvalue �(D), with minimiser x
equal to any 1nite eigenvector of D.

Proof. By taking x equal to any .nite eigenvector, the achieved value is

x∗ ⊗ D ⊗ x = x∗ ⊗ (�(D)⊗ x) = �(D)⊗ (x∗ ⊗ x) = �(D):

Now, in [3, Theorem 25-10], it is shown that �(D) gives the optimal value of � in the
following linear-programming problem in variables �; x1; : : : ; xn:

minimise �; subject to �+ xi − xj¿dij for all .nite dij:

The constraints are equivalent to

�¿ max
ij

(−xi + dij + xj) = x∗ ⊗ D ⊗ x;

in fact to

� = x∗ ⊗ D ⊗ x;

since � is being minimised, so the minimum value of x∗ ⊗D⊗ x is �(D).

Theorems 8.1 and 8.2 give a plausible basis for taking an eigenvector of A∗ ⊗A as
a starting solution in the Alternating Method.
It is clear that we could argue in terms of the sequence {y(r)} instead of {x(r)},

obtaining an analogous bound if B is .nite, and taking the smaller bound if both A, B
are .nite. Hence:

Theorem 8.3. The alternating method has pseudopolynomial complexity.
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9. A su.cient condition

De.ne

M = (A∗ ⊗′ B)⊗ (B∗ ⊗′ A):

Theorem 9.1. If M has 1nitely soluble eigenproblem, then �(M)60.

Proof. If � is a .nite eigenvector of M then, writing � for �(M), and using (2.1),
(2.2) and isotonicity,

�⊗ (A⊗ �) = A⊗ (�⊗ �) = A⊗M ⊗ � = A⊗ (A∗ ⊗′ B)⊗ (B∗ ⊗′ A)⊗ �

6 B⊗ (B∗ ⊗′ A)⊗ �6 B⊗ (B∗ ⊗′ (A⊗ �))6 A⊗ � (9.1)

implying the result.

Theorem 9.2. If �(M)= 0, then (�;  (�)) is a solution for every 1nite eigenvector �
of M .

Proof. If �=0, then all the terms in (9.1) are equal, and

A⊗ � = B⊗ (B∗ ⊗′ (A⊗ �)) = B⊗  (�):

Since the eigenvalue, and the space of eigenvectors, of any square matrix can be
determined by standard algorithms of low-order polynomial complexity, this allows
e6cient determination of a solution when �(M)= 0. Unfortunately, this condition is
not necessary for the existence of a solution, as the example of Section 4 shows. Here,
M may be calculated as

−∞ −∞ −4
−∞ −∞ −1
−∞ −∞ −2




and then �(M) is evaluated [1] at −2.

10. The inhomogeneous case

In view of the relatively straightforward nature of the alternating method, it is of
interest to note that it may be used to seek .nite solutions to instances of the inhomo-
geneous problem (1.2) with A, B doubly G-astic and a, b .nite. First, consider

C ⊗ x = D ⊗ x: (10.1)

This is equivalent to

C ⊗ x = y; D ⊗ x = y
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and hence to[
C
D

]
⊗ x =

[
I
I

]
⊗ y; (10.2)

where I is the usual identity matrix over R, with diagonal elements zero and o>-
diagonal elements equal to −∞. Clearly (10.2), is an instance of (1.1). Since I is
doubly G-astic, we conclude that a solution to any instance of (10.1) with C, D
doubly G-astic may be found by the Alternating Method whenever a solution exists.
Now introduce an extra single scalar variable z, and consider

A⊗ x ⊕ a⊗ z = B⊗ x ⊕ b⊗ z: (10.3)

Any instance of (10.3) with A, B doubly G-astic and a, b .nite is an instance of (10.1)
with C, D doubly G-astic, on substituting C by [A; a]; D by [B; b]; x by [ xz ]. But it is
clear that (10.3) has a solution with z .nite if and only if it has a solution with z=0,
since if [ xz ] is a solution then so is (−z)⊗ [ xz ]. And the x-parts of .nite solutions to
(10.3) with z=0 are precisely the .nite solutions to (1.2).
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